skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kooyers, Nicholas_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Herbaceous plant species have been the focus of extensive, long‐term research into climate change responses, but there has been little effort to synthesize results and predicted outlooks. This primer summarizes research on climate change responses for eight intensively studied herbaceous plant species. We establish generalities across species, examine limitations, and propose a path forward. Climate change has reduced fitness, caused maladaptation, and/or led to population declines in at least part of the range of all six forb species. Plasticity alone is likely not sufficient to allow adjustment to shifting climates. Most model species also have spatially restricted dispersal that may limit genetic and evolutionary rescue. These results are surprising, given that these species are generally widespread, span large elevation ranges, and have substantial genetic and phenotypic variation. The focal species have diverse life histories, reproductive strategies, and habitats, and most are native to North America. Thus, species that are rare, habitat specialists, or endemic to other parts of the world are poorly represented in this review. We encourage researchers to design demographic and field experiments that evaluate plant traits and fitness in contemporary and potential future conditions across the full life cycle, and that consider biotic interactions in climate change responses. 
    more » « less